Embedded Systems
Products & Resources

Home Products Shipping Resources About Contact

AVR ICE-Cube

Other Products for
Atmel AVR MCUs

Other Product Groups

All material on
this Web site is
protected under
United States
and International
copyright law.
[more...]

Liability for your
use of information
on this Web site is
strictly limited.
[more...]

Trademarks used
on this Web site
are the property of
their respective
owners.

Atmel and AVR
are registered
trademarks of
Atmel Corporation.

AVR ICE-Cube - Technical Details

This page presents the technical details of the ECROS Technology AVR ICE-Cube JTAG interface.  You do not need to understand this information to use the ICE-Cube, but it may help you chose the right JTAG ICE interface for your needs and gain the most benefit from it.  Experiences with a rather poor quality JTAG ICE are included to illustrate the importance of good design.  These paragraphs are set off in boxes so you can skip them if they do not interest you.

Specifications

Specification Item AVR ICE-Cube Atmel JTAG ICE Brand X
Self-powered no yes, 9 to 15 V  
Target voltage range, self powered n/a 1.8 to 6 volts  
Target-powered (pin 7 of header) yes yes  
Voltage range, target powered 3 to 5.5 volts 3.3 to 5.5 volts  
Current draw, target powered 12 to 25 mA 220 to 120 mA  
Source of operating software AVR Studio AVR Studio  
Automatic version update yes yes  
Manual version change yes yes  
Target system voltage measurement yes, 5% yes ( ???)  
Supported devices ATmega16,162,169,32,323,64,128, etc.  
LED indicators Power, Activity Tgt p., ICE p., Actv.  
Bench space required none 20 sq. in.  
Weight 2 oz, incl. cable 8 oz estimated  
Price $39.95 $300.00 approx  
Available accessories STK500 Adapter    

The AVR ICE-Cube draws 13 mA from the target at 3.3 volts and 22 mA at 5V.  The Atmel JTAG ICE uses an up-converter when target powered.  This is why current draw is greater (220 mA) at the lower target voltage of 3.3 volts.

Atmel state in the JTAG ICE User's Guide that the manual firmware upgrade "should work" in all cases.  This feature of the AVR ICE-Cube is fully tested and is guaranteed to work.

Theory of Operation

JTAG In-Circuit Emulation (ICE) in Atmel AVR microcontrollers consists of three parts:

Atmel's JTAG ICE is the "reference" implementation of this JTAG interface circuit.  The JTAG ICE User Guide provides excellent information about the OCD concept.

A JTAG ICE interface consists basically of an Atmel microcontroller with a serial interface to the PC running AVR Studio.  The AVR Studio debugger sends commands to the JTAG ICE, which reformats them and applies them to the target system microcontroller's JTAG pins.  Responses from the target are reformatted and passed back to the debugger.

The software that runs in the JTAG ICE and performs this reformatting between RS232 and JTAG is supplied along with AVR Studio.  The JTAG ICE is programmed with this software using a built-in flash loader (sometimes incorrectly called a "boot loader") and Atmel's AVR Prog utility, also supplied with AVR Studio.  AVR Studio checks that the software in the JTAG ICE is of the correct version and, if necessary, offers to upgrade it by automatically starting AVR Prog.  If the flash loader has been properly designed, this will also be started ready to receive the new software.

The fact that Atmel supply the software for a JTAG ICE in a freely distributable package allows other JTAG ICE interfaces to be produced at lower prices (and generally smaller feature sets) than Atmel's unit.  By using the Atmel software, such a "clone" JTAG ICE can be assured to operate in basically the same way as the reference.  However, there is more to a JTAG ICE than the Atmel software and non-Atmel products are differentiated by how well they are designed to handle such issues as EMI, power supply isolation, convenience of software loading, etc.  Sections below discuss these issues to help you make an informed decision about which JTAG ICE interface is for you.

Printed Circuit Board

The reliable operation of any piece of electronic equipment depends on the proper design of the printed circuit board.  It is not sufficient to simply connect up components according to the schematic.  Today's fast-switching ICs require attention to the path taken by signals travelling from place to place both in the out-going direction and the return direction, back to ground at the signal source.  Unfortunately, some inexperienced designers are unaware of or ignore these issues, particularly ground return paths.  As a result, the equipment works in some environments, but becomes "flaky" in others.  The "loops" of badly-placed PCB traces pick up electromagnetic interference (EMI or "noise") from things like refrigerators and vehicles.  These loops can also emit EMI, making other equipment, including the target system, misbehave.

The JTAG ICE clone examined by ECROS Technology paid no regard whatsoever to ground return paths.  The ground signal was routed just like any other and wandered all over the board.

The ECROS Technology AVR ICE-Cube uses a partial ground plane design for ground returns.  This is not as good as a complete ground plane, but better than a grid and certainly better than normal point-to-point routing.  For the MCU on the adapter, which runs at less than 10 MHz, a partial ground plane is completely adequate and avoids the cost of a four-layer PCB.  The picture at right (click for a larger version) shows that most of the PCB is covered with ground plane on one side or the other.  This helps signals find a return path close to the out-going path or, where there is a gap in the ground plane, divide into multiple paths in opposite directions that cancel EMI.

Voltage Range

JTAG ICE interfaces that draw power from the target system have a more limited operating voltage range than those with their own power supplies.  This is because the target supply has to be high enough for the adapter circuits to work, including the MCU and RS232 level converter.

The JTAG ICE clone examined by ECROS Technology could only be guaranteed to work from 4.5V to 5.5V, due to a poor choice of components.

The ECROS Technology AVR ICE-Cube uses components that guarantee operation from 3V to 5.5V.  The current drawn from the target system varies from 12 to 25 mA over this range.  For Atmel MCUs with very low supply voltages or systems that cannot supply this current, an adapter with its own power supply and level shifters is necessary.

Power Supply

The ECROS Technology AVR ICE-Cube draws its operating power from the target system on pin 7 of the connector.  This is in accordance with Atmel's intent.  A target system that is able to supply power connects this pin to a suitable supply.  A target system that has no power to spare, such as the AVR Butterfly, leaves this pin unconnected.

Just as a poorly designed PCB can lead to "flaky" operation, noise coupled from the target system to the JTAG ICE interface can cause problems if the target system produces a lot of noise.  Noise coupled in the other direction can cause problems when the target system is sensitive to noise.  Note that most, if not all, JTAG ICE interfaces include an RS232 level converter which has a charge-pump power supply - a classic producer of noise.

The JTAG ICE clone examined by ECROS Technology did not include isolation between the adapter power and the target power.  Adapter power was connected directly to pin 7 of the ten-pin target connector.  The only supply decoupling provided was a single ceramic capacitor, not particularly well located, and a 10 F aluminum electrolytic capacitor, a poor choice as compared to tantalum.

The ECROS Technology AVR ICE-Cube isolates adapter power and target power with a 330 H inductor.  Four ceramic capacitors are used for supply decoupling, 0.1 F between each VCC pin of the adapter MCU and the power trace plus 0.47 F at the RS232 level converter.  A space for a B-size tantalum electrolytic capacitor is included on the PCB  This has been found to be unnecessary but can be added if desired.  This design virtually eliminates the coupling of power supply noise between the ICE interface unit and the target system.

For more information on both PCB layout and supply decoupling issues, refer to Atmel Application Note AVR040: EMC Design Considerations.

Flash Loader

An essential function of the JTAG ICE interface is the flash loader, which enables the software to be loaded from AVR Studio.  It does not affect the use of the adapter during debugging, but can affect the convenience with which the software is initially loaded and updated.

With the JTAG ICE clone examined by ECROS Technology, it took three hours to load the AVR Studio software.  The case had to be opened, a special cable built, fuse settings had to be changed using an ISP interface such as the STK500, then the software could be loaded, the fuse settings restored, the special cabling broken down and the case closed up.  At the end of the software load process, AVR Prog indicated a verification failure.  Documentation with the clone stated that this was to be ignored and the adapter did work properly, however verification clearly did not take place.  Automatic update to newer versions of AVR Studio did not work and it seems that the initial load procedure would need to be repeated.  In fairness, the manufacturer of this clone adapter claims to have "fixed a bug" in the flash loader and you may be lucky enough to get a newer version than I did.  It seems unlikely that anyone would now try to sell an adapter that is this hard to use.

The ECROS Technology AVR ICE-Cube includes a flash loader that is immediately active when you first apply power.  When you load the software using AVR Prog, verification works properly.  The adapter is then immediately ready for use, without even cycling power.  If AVR Studio needs to update the software, the flash loader is activated automatically.  If needed, the flash loader can also be activated by turning on power while a pad on the circuit board is shorted to ground.  This takes no longer than the time to find a paperclip or small screwdriver.  Once the flash loader is active, any version of the Atmel software can be loaded in less than a minute.

Target Voltage Measurement

The Atmel JTAG ICE has a few "ancillary" functions not fundamental to loading and debugging software.  One of the most useful is the ability to measure and display the target system voltage.

The JTAG ICE clone examined by ECROS Technology reported the target system voltage as 5V in all cases, whatever the actual voltage was.

The ECROS Technology AVR ICE-Cube adapter reports the actual target system voltage to an accuracy of better than 5%.  High voltages are slightly underestimated (5.0 V reads as 4.9) and low voltages are overestimated (3.3 V reads as 3.4), but you can certainly check that the target power supply is working properly.  AVR Studio can also detect loss of target power if you arrange for the AVR ICE-Cube to have its own power source.

Packaging

Packaging is not really a technical issue, but has been included here for completeness.  What type of packaging you choose for your adapter will be a matter of personal preference and the way that your work area is set out.

The JTAG ICE clone examined by ECROS Technology was packaged in a modified DB9 to DB25 adapter housing.  The DB25 side held a metal plate through with the 7-inch target system cable and activity LED passed.  A DB9 cable was required to connect to the computer and was not included with the adapter.  This packaging would be fine in many cases.  I found that the adapter and the bulky and heavy DB9 cable took up more space in my small work area that I would like and had a tendency to pull my very small and light target system off the desk.  Pictures of other JTAG ICE clones on the Web show some in small boxes and others that are just bare PCBs with cables.

The ECROS Technology AVR ICE-Cube is unique in that it does not sit on the bench but is held above the target system, "perching" on the 10-pin connector.  It therefore takes up no bench space.  The lighter cable to the hosting PC has less tendency to pull the target system around.  As with many other aspects of the ECROS Technology JTAG interface design, this improves EMI compatibility by eliminating the target system cable.  The serial cable to the PC is also shielded, which may not be the case with your DB9 cable.  However, perching the JTAG interface unit on the target may not be the right choice for you.  A cable adapter is supplied with which you can connect the ICE-Cube to your target system using a ribbon cable, such as those supplied with the STK500.  For more information, refer to Connecting to a Target System.

Click this button to go back to the ECROS Technology AVR ICE-Cube introduction.